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Abstract

Ultrasound imaging is widely used in the clinical practice mainly due to its real-time

and non-invasive capabilities. The advancement of ultrasound technology relies heavily

on robust simulation methods to test and refine new algorithms. Ultrasound simulation

encompasses the generation of radiofrequency (RF) data emitted by transducers and the

subsequent generation of B-mode images through post-processing techniques.

Current ultrasound simulation methods, predominantly overlook tissue deformation.

Most of them operate under the assumption of static tissue scatterers arranged in a

non-deformed, regular grid configuration. This limitation undermines the accuracy and

realism of the simulated ultrasound images, as real-world imaging scenarios involve some

degree of tissue displacement due to the pressure exerted by the ultrasound probe.

This work explores the application of the Finite Element Method (FEM) to model tis-

sue displacement caused by the ultrasound probe’s force. This displacement is then used

to update tissue scatterers reflecting their position in a post- deformed configuration. We

integrate the scatterer model proposed by Gaits el al.(2023) [1] with 3D FEM simulation

to obtain ultrasound images accounting for tissue deformation. Tissues are modeled using

elasticity principles, and characterized by mechanical properties (Young’s Modulus and

Poisson Ratio). Recognizing that tissues do not deform in one single dimension when

compressed, we propose the use of an augmented Acquisition Zone to account for scat-

terer displacement out of the imaging plane, and a subsequent spatial filtering with the

probe’s Acquisition Zone post-deformation. The final B-mode image is generated using

the convolutional approach.

We leverage FEniCS software [1] to define the variational form describing the tissue

deformation under the probe’s pressure. FEniCS automates the FEM process, allowing

us to efficiently solve the governing equations and obtain the displacement field. Further-

more, it grant access to different powerful tools, that have facilitated the deformation

modeling in the simulation framework.
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Chapter 1

Introduction

1.1. Ultrasound Imaging Fundamentals

Ultrasound imaging modality is widely used in clinical practice due to its low-cost, real-

time capability and non-invasive, non-destructive evaluation of tissues. An ultrasound

examination consists of moving a transducer over the patient’s body to scan 3D internal

organs. It generates 2D cross-sectional images of the anatomy being examined, based on

the probe’s position and angle.

The fundamental physics of ultrasound involves the propagation of high frequency

sound waves (1-20 MHz) produced by a transducer that converts electrical energy into

mechanical energy and vice versa. As ultrasound waves travel through the tissues, they

encounter boundaries between different materials of varying acoustic impedance, causing

partial reflection and transmission of the waves. Reflections of the sound waves that

return to the probe are known as echoes. The more significant the difference in the density

of the two tissues, the stronger the echo will be produced, resulting in a hyperechoic

(brighter) image. The opposite occurs when there is a small difference in density between

tissues, resulting in a hypoechoic (darker) image.

Tissues reflect ultrasound waves differently depending on their interfaces and mi-

crostructure composition. Smooth interfaces are considered specuclar reflectors resulting

in sound waves being reflected back in relatively uniform directions. On the other hand,

irregular interfaces are called diffuse reflectors causing the scattering of ultrasound waves

in different directions. A particular type of scatter, known as Rayleigh scattering, oc-

curs when reflectors’ surfaces are much smaller than the beam’s wavelength. These small

reflectors are known as scatterers[2].

As a result of the interference of the scattered waves, the typical noise pattern known
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as ultrasonic speckle is formed. When multiple scattered waves overlap, they can either

interfere constructively or destructively, resulting in different patterns that can provide

valuable information about tissue microstructure. Nevertheless, although informative,

speckles can also be seen as noise compromising tissue contrast and image quality.

When the transducer receives echo signals, it generates raw electrical signals known

as RF (radio frequency) data, which contain detailed amplitude and phase information.

To create ultrasound images, a process called beamforming combines the RF signals from

multiple transducer elements. The beamformed signals undergo a series of post-processing

steps, including envelope detection, log compression, and filtering. Finally, a grayscale

image, known as B-mode, is produced where pixel brightness corresponds to echo signal

strength.

Understanding ultrasound physics and the intricacies of speckle formation is not only

crucial for interpreting clinical images but also plays a significant role in the develop-

ment of ultrasound simulators. The growing interest in simulation technology extends

beyond physician training to test new computational algorithms in controlled settings.

To enhance realism in ultrasound simulation, it is essential to accurately capture both

speckle patterns and tissue deformation induced by the compression of the probe during

an ultrasound examination.

1.2. Ultrasound Simulation

A critical step for ultrasound simulation is to model echos resulting from the interac-

tions between the ultrasound waves and the different volume elements constituting the

tissue sample i.e. scatterers. In this context, mammalian cells within a specific type

of tissue are assumed to act as weak point scatterers with identical scattering power,

simplifying the complexity of interactions and allowing for a more straightforward sim-

ulation of the echo formation process [3]. Figure 1.1, shows an example of a simulated

echocardiographic image from a collection of scatterers mimicking the anatomy of the

heart.

Wave-based approaches simulate ultrasound propagation in tissue by solving complex

acoustic wave equations. Common physical simulators in the literature include Field II

[4] or Simus [5]. These can yield highly accurate and realistic results in static images.

The main drawback of these simulations is the high computational time required. On

the other hand, convolution-based methods are capable of producing realistic ultrasound

speckle patterns while decreasing the computational time, making them more suitable for
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Figure 1.1: Simulated three-chamber-view echocardiographic image, generated by SIMUS

using ∼40,000 scatters (left). Taken from [12]

real-time applications. Notably, the simulation model proposed by Meunier and Bertrand

has been widely used [6], wherein the interaction between ultrasound field and tissue is

approximated as the convolution of tissue scatterers with an ultrasound system spatial

impulse response (point-spread function, PSF) [7]. Additionally, ray-tracing methods

have emerged as promising approaches from real-time simulations simulating the inter-

action of ultrasound waves with scatterers using techniques from derived from computer

graphics and physics-based modeling [8].

Tissue scatterers are typically modeled as a collection of points with varying ampli-

tudes and spatial positions. The amplitude of the scatterers is often represented by a

Gaussian distribution, allowing tissue characterization to be quantified by the mean and

the standard deviation, the latter representing tissue’s structural heterogeneity which is

related to the scattered strength of the returning echoes [9],[10]. A common approach

to generate scatterers’ amplitudes involves scaling random values drawn from a standard

normal distribution N(0, 1) using the tissue-specific standard deviation [4]. The collection

of these standard deviations forms a representative map of the tissues to be simulated,

commonly referred to as scattering strength map or tissue mimicking map [4][11].

Regarding the spatial distribution of the scatterers, one of the main challenges arises

from the need to ensure a uniform coverage of the tissue sample volume to be simulated.

Some authors proposed the use of a rectangular grid, potentially with minor random

perturbations, or opting for a completely random distribution [3]. The generation and

storage of a sufficiently large number of scatterers is essential to ensure a fully developed

speckle. When transitioning from 2D to 3D ultrasound simulation there is a significant
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increase in the required number of scatters, which escalates from thousands to tens or

hundreds of billions for 3D volumes [11]. Consequently, the storage and manipulation of

such vast quantities requires advanced strategies to manage these computational demands

efficiently.

1.3. Soft Tissues Deformation

Soft tissue modeling spans various research domains, including medical simulations,

character animations, or cloth deformation in 2D and virtual try-ons in the fashion in-

dustry [13],[14],[15]. From a biomechanical point of view, tissue modeling consists of

predicting the behaviour of deformable tissues in response to applied forces or displace-

ments.

Soft tissues can be regarded as composite, non-homogeneous, more or less incompress-

ible, non-linear viscoelastic materials [16]. Despite this complexity, certain assumptions

are made to facilitate modeling. These include treating tissue as linear elastic for small

deformations, isotropic and nearly incompressible. Specifically, this means that the re-

sulting strain increases linearly with incremental stress, the tissue returns to its original

(non-deformed) state after the load is removed, the tissue responds uniformly to stress,

and its overall volume remains nearly constant under applied stress [16]–[18]. Building

on these assumptions, the theory of elasticity establishes the foundation framework to

formulate the mechanical dynamics of the tissues under force application using the laws

of continuum mechanics.

At the heart of continuum mechanics lie the fundamental concepts of deformation

and displacement, which are introduced to measure the change in position and shape

within a solid body. As illustrated in Figure 1.2, a material point X in the reference

configuration is displaced to a material point x in the deformed configuration, guided

by the deformation function Φ : R3 → R3. This function maps points X to x via

Φ(X) = X +u(X) with u(X) representing the displacement. In the same way, a straight

line on the reference configuration will be mapped to a smooth curve on the deformed

configuration. The deformation gradient F describes how an infinitesimal line segment

dX, is stretched and rotated, with dx = FdX representing the resulting change [19].

From the deformation gradient F , different geometric measurements can be derived.

Starting with the Green-Lagrange strain tensor E(x), defined as:

E(x) =
1

2

[
(F⊤F )(x)− I

]
(1.1)
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Figure 1.2: Reference configuration and deformed configuration of a continnum body [19].

where I is the identity matrix. When Φ(x) is a rigid-body motion, E(x) = 0, indicating

no strain. As a result, the Green-Lagrange strain tensor measures how much a given

displacement locally differs from a rigid-body displacement [20]. In the context of small

deformations, the infinitesimal strain tensor, denoted as ϵ(u) is often used. It serves as an

approximation that simplifies the mathematical analysis of the deformation by assuming

that the displacements and rotations involved are sufficiently small to neglect non-linear

effects. The infinitesimal strain measure is given by:

ϵ(u) =
1

2
(∇(u) + (∇(u)⊤) (1.2)

In addition to measuring deformation, it is crucial to understand how internal forces

are generated as resistance when an elastic body is exposed to external loads. The stress

at a point within the body is described by the stress tensor σ(x). It can be described as a

function of the infinitesimal strain ϵ and thus, the displacement u thought the constitutive

equation, which is also known as the material model :

σ = λtr(ε)I + 2µε (1.3)

where λ, and µ are the Lamé constants. These constants characterize the material re-

sponse to deformation and are fundamental in determining its mechanical behaviour.

They can be calculated from commonly known material properties such as Young’s mod-

ulus (E) and Poisson’s ratio (ν), as follows:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(1.4)
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No material properties are used in the derivation of the equilibrium equation since

they are applicable to any material. The equilibrium equation is given by:

f +∇ · σ = 0 (1.5)

Linear elastic deformations can be effectively modeled with appropriate boundary

conditions and equations including kinematic, constitutive, and balance equations, as de-

scribed in (1.2), (1.3), and (1.5), respectively. Using measured values of Young’s Modulus

and Poisson’s Ratio reflecting the biomechanical properties of the tissue being modeled is

crucial. Young’s modulus provides a measure of stiffness, while Poisson’s Ratio measures

tissue compressibility. Figure 1.3 illustrates the Young’s modulus for different tissues

within the human body, allowing their characterization based on mechanical properties.

Additionally, tissue stiffness plays a significant role in differentiating between diseased

and healthy regions within the tissue, as pathological changes often alter the mechanical

behavior of tissues. Accounting for these mechanical differences has proven valuable in

tumor detection [21].

Figure 1.3: Mechanical properties of different human tissues. Taken from [22]

The mechanics of biological soft tissues can be effectively simulated with finite element

models [23]. The Finite Element Method (FEM) plays a crucial role in biomechanics and

engineering by enabling the simulation of real-world deformations and facilitating the

understanding of tissue responses under diverse loading conditions. It involves discretiz-

ing the continuous domain of soft tissue into smaller, simpler elements to form a finite

element mesh. Each element approximates the tissue’s mechanical behavior based on
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defined constitutive laws. Within these elements, interpolation functions, are utilized

to interpolate values from discrete node points, ensuring smooth transitions across the

mesh. This approach treats soft tissues as continuous materials, allowing complex me-

chanical behaviors to be accurately approximated over simple element shapes rather than

the entire problem domain.

1.4. Contributions

This thesis work builds upon the work proposed by Gaits et al. (2023) [11], titled

"Efficient Stratified 3D Scatterer Sampling for Freehand Ultrasound Simulation". Their

methodology is used as a foundation for the scatterer extraction with respect to a probe’s

position and a tissue mimicking volume in a reference (non-deformed) configuration.

• Deformation-aware scatterer placement. This contribution involves integrat-

ing the deformation effects induced by the probe-tissue interaction. By incorpo-

rating principles from the theory of linear elasticity and using the Finite Element

Method (FEM), the displacement field resulting from tissue deformation is calcu-

lated. Subsequently, scatterers’ positions are updated with respect to the deformed

configuration, thereby enhancing the realism of the simulation.

• Enhanced tissue mimicking volume. This work extends the concept of tissue

mimicking maps to incorporate the biomechanical properties of the medium. By

integrating parameters such as Young’s Modulus and Poisson ratio into the tis-

sue mimicking volume, a more comprehensive representation of tissue behaviour is

achieved. This enables the simulation of a wider range of tissue types.

• Expansion of numerical phantom capabilities. This work extends the capa-

bilities of numerical phantoms by enabling the creation of a collection of geometric

objects (cube, sphere, plane), rather than just single objects. This extension can

open the door to more flexible and realistic representations of anatomical structures

in the future.

1.5. Outline

The summary of the chapters of the thesis work:
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Chapter 2 This chapter provides a review of related works, focusing on the applications

of the FEM and the integration of deformation modeling into ultrasound simulation

frameworks.

Chapter 3 This chapter presents the integration of FEM simulation and scatterer

model into the simulation framework. It reviews the mathematical foundation and the

implementation using FEniCS software.

Chapter 4 This chapter showcases results of simulated ultrasound images accounting

for tissue deformation, contrasting them with non-deformed simulated images. ParaView

software is used to visualize the effects of the deformation in different tissue samples in

the 3D domain.

Chapter 5 This chapter offers a summary of findings, reflecting on conclusions drawn

from the results and suggesting new lines for future work.
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Chapter 2

Related Works

2.1. Soft Tissue Simulation

Surgical simulations have been among the pioneering applications of soft tissue de-

formation modeling in the medical field, aiming to assist surgeons in planning optimal

surgical strategies and enhancing their training. Both traditional and robot-assisted surg-

eries require extensive training for surgeons to proficiently perform procedures. While

anatomical models created from the reconstruction of acquired image data constitute

a well-established research area, surgical simulations require sophisticated methods to

simulate how soft tissues deform in response to interactions with tools such as needles,

scalpels, or ultrasound probes.

Soft tissue modeling in medical simulations must achieve both realism and real-time

performance. To ensure realism, soft tissue models must accurately represent the de-

formability of actual tissues. This accuracy depends on the choice of mathematical mod-

els, which can vary according to the type of tissue being modeled. For instance, from the

systematic review of real-time medical simulations carried out by [24], works in literature

commonly model skin as either a linear elastic or hyperelastic material, breast tissue as

hyperelastic, liver tissue as nonlinear elastic, and blood vessels as viscoelastic materials.

Due to the real-time computational demands of surgical simulations, most existing

methods use elastic constitutive law to describe soft tissue deformation. This is the sim-

plest way to model the mechanical response of soft tissues for most materials. However,

it is only valid for small displacements. For large displacements, more complex non-linear

models should be considered to capture the true behaviour of the tissues accurately [25].

It’s important to note that while more complex constitutive laws can enhance fidelity, they

20



also introduce greater computational overhead, which may pose challenges for achieving

real-time performance in medical simulations.

2.2. FEM Simulations in Ultrasound

The literature review on the estimation of tissue deformation using FEM simulations in

ultrasound reveals three main purposes:

Figure 2.1: Conceptual Map: FEM applications in Ultrasound Imaging.

Validation Tools

To validate novel algorithms, a priori knowledge is necessary, which can be accessed

through simulations. In [26],[27] simulated RF data accounting for tissue motion was used

to evaluate blood velocity estimators, stationary echo canceling filters, and other filters for

processing recorded RF-signals. Simulations with tissue motion provided prior knowledge

of tissue components in the RF signal; blood and surrounding tissue. Separating these

components is essential for accurate blood velocity estimation. Their models included

tissue motion induced by pulsation, heartbeat, and breathing, derived from in vivo RF

data using autocorrelation methods between adjacent RF lines. In order to estimate

RF data with tissue deformation, point scatterers with amplitude properties of tissue or

blood, were moved around according to the motion model and fed into the RF simulation

program Field II.

Similarly, in response to the need for experimental evaluation of strain estimation

methods, FEM simulations were employed to generate post-compression RF data. In

contrast to inherent tissue motion, these simulations applied a uniform compression load

to the top of the tissue while keeping the bottom fixed, also known as quasi-static defor-
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mation. In these experiments, researchers typically constructed both homogeneous and

non-homogeneous incompressible phantoms with known mechanical properties.

Early works such as [28], used FEM to model 2D axial compression, while [29] ex-

tended the simulation to various degrees of axial compressions in 3D. Later works, such

as those by [30] using FEM from ANSYS-11 software and [31] using ABAQUS software

package, further advanced 3D axial compression modeling. Field II is widely recognized

as the preferred ultrasound simulation software in these studies, utilizing a linear elastic

model for tissues.

Moreover, FEM simulations were crucial in controlled experiments using phantoms

to validate non-invasive imaging of Young’s modulus and Poisson’s ratio from estimated

axial and lateral strains in vivo. Imaging the mechanical properties of tissues has gained

significant interest due to its potential to detect pathological conditions based on biome-

chanical property alterations. [32] used 3D FEM simulations with commercial ABAQUS,

employing both linear elastic and poroelastic tissue models to enhance understanding

and accuracy in tissue characterization through non-invasive imaging techniques.

More recently, FEM has been proposed as a validation tool to assess the performance

of emerging imaging technologies, such as robotic ultrasound systems [33].

Deformation Compensation Methods

Deformation, although realistic in ultrasound simulations, can also be viewed as an

artifact that complicates fusion with other modalities or patient 3D models derived from

imaged anatomy. Addressing this use, [34] used 3D FEM simulation to estimate deforma-

tion caused by the known surface geometry of the probe contact area. A distinguishing

feature of their work is the use of tetrahedral meshes with finer elements near the super-

ficial central region where probe contact occurs to accurately simulate local high-strain

deformations. The displacement field obtained with FEM is then used to undo the de-

formation at the voxel intensity level.

Ultrasound Training

Medical training in ultrasound is essential because low signal-to-noise ratios and imag-

ing artifacts can complicate interpretation for diagnostics. Additionally, invasive proce-

dures such as biopsy training, brachytherapy, and catheter placement require proficient

ultrasound skills. Computer simulations can create and integrate relevant content into a

repeatable learning environment, making even rare pathologies easily accessible.
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Current ultrasound simulators assume a static, non-deformed configuration of a 3D

volume, which can be obtained from ultrasound or other modalities like CT. In ultrasound

training, simulators commonly involve reslicing and post-processing techniques to include

deformations. However, these simulations do not account for tissue motion, which is a

significant limitation.

One approach to incorporate deformation, is to first compute the deformed voxel loca-

tions and then find (interpolate) the pixel intensities. However, it has a major disadvan-

tage: the deformed voxels no longer lie on a regular-grid structure, making interpolation

techniques difficult. To overcome this limitation, [35] proposed an inverse deformation

mapping of image pixel locations in 2D back to the pre-deformed volume 3D configura-

tion. The position of the pixels are located within a deformed mesh in 3D using the FEM.

Each 3D pixel location in the deformed configuration is then interpolated to the regularly

spaced undeformed pixel locations. This method allows for simple and fast interpolation

techniques on a regular-spaced grid. Deformation was applied by indenting a phantom

with the probe, fixing nodes at the bottom of the phantom, and applying displacement

constraints on the nodes in contact with the probe. Using trilinear interpolation (TLI),

the simulation of a B-mode frame on the same computer took approximately 25 ms.

Figure 2.2: Transformation that maps a pixel to the reference voxel volume, where inter-

polation g(·) finds its intensity value. From Goksel et al. (2009) [35]

The inverse deformation mapping idea was also used by [36] and its subsequent work

[37]. In these cases, they used ray-tracing techniques to simulate B-mode ultrasound

images, including deformation. To handle deformation, they proposed working in the

scatterer domain. The amplitude of the scatterers is derived from the voxel image in

the deformed configuration, computed using inverse deformation and interpolation tech-

niques. They also introduced the feasibility of dynamic simulations by fusing low-interest

areas (background) with animated anatomical models. This can simulate heart motion

or variations of fetuses at all gestational ages, where surrounding tissue (background)

deforms accordingly to create space for the fetus.
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For invasive simulations, models for needle-deformable tissue interaction have been

widely studied in the literature. More recent methods, propose the use FE models to

simulate lacerations around the needle [38].

2.3. Conclusion

After this review, we have identified two main possibilities to handle tissue deformation

in ultrasound simulation using the FEM. Firstly, at scatterer level, which is commonly

found in validation techniques that use FEM simulation to obtain a priori information

about RF data accounting for displacement induced either by tissue intrinsic motion or

compression forces. However, these methods terminate at the simulation of RF data;

they are not commonly applied for end-to-end simulation of B-mode ultrasound images.

On the other hand, deformation at voxel level is used for interpolative simulations

which are often used for medical training. Starkov et al. (2019) [37] also adopt this

approach, utilizing ray-tracing techniques to handle deformation within the scatterer

domain. Instead of physically relocating scatterers to simulate post-deformation config-

urations, this method updates scatterer amplitudes using inverse deformation and inter-

polation of voxel intensity values. While effective for generating B-mode images with

deformation, this approach assumes a constant number and distribution of scatterers

within regular cell grids post-deformation, which may not always hold true. An oppor-

tunity for future research could lie in fully integrating the deformation process into the

scatterer domain, no matter the ultrasound simulation technique employed.
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Chapter 3

Ultrasound Simulation with Tissue

Deformation

In this thesis, we explore the simulation of ultrasound B-mode images with tissue

deformation induced by the pushing force of an ultrasound probe. Figure 3.1 illustrates

the workflow for the proposed simulation framework. Purple rectangles indicate the

processes taken from previous work by Gaits et al. (2023) [11], which includes a scatterer

model and other processes related to the generation of the B-mode image following the

convolutional approach. Blue rectangles correspond to the processes designed to include

deformation into the simulation flow, which mainly involve a deformation model using

FEM, and other processing functions to apply the deformation field to the scatterers’

positions, resulting in a post-deformation frame. We propose the use of an augmented

Acquisition Zone (AZ) to extract the scatterers in order to account for their possible

movement in the x, y, and z directions, and subsequent filtering within the probe’s AZ in

the post-deformation configuration. Further details are explained in the next subsections.
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Figure 3.1: Workflow of the proposed simulation methodology, integrating previous pro-

cesses from Gaits et al.(2023) for scatterer extraction and B-mode image generation (pur-

ple) with new processes for deformation modeling using FEM and scatterer adjustment

post-deformation (blue).
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3.1. Spatially Coherent Ultrasound Simulation (SCUS)

Gaits et al. introduce a novel approach for 3D scatterer generation, emphasizing a

memory-efficient data structure that minimizes storage requirements while ensuring rapid

scatterer access. Here we present the main aspects of their approach, which serve as the

foundational scatter model in our simulation framework.

3.1.1 Scatterer Generation

Scatterer generation is structured around a grid data approach, where a tissue volume

is organized into regular cells, each containing a predetermined number of scatterers.

This method minimizes computational demands by storing only the scatterer positions

within one cell, instead of the whole population. They employ stratified sampling to

ensure uniform distribution while mitigating aliasing through random perturbations like

rotations. The spatial distribution within cells is crucial, they propose the use of con-

stant random sequences based on discrepancy and blue-noise sampling, specifically DT

or Cascaded Sobol. Therefore, per each cell, only a perturbation index, the position of

the cell, and a seed of the random sequence need to be stored. Scatterer amplitudes are

defined with respect to a tissue mimicking volume. Random numbers are drawn from a

standard normal distribution N (0, 1) using the cell random seed, and scaled by its value

sampled at its position from the tissue mimicking volume.

3.1.2 Scatterer Extraction

Scatterers within a defined AZ are extracted from a grid-based volume. Firstly, the AZ

is characterized as a rectangular parallelepiped, determined by the probe’s width, height,

and depth, with position and orientation dictated by the probe’s location. Then, the

scatterer extraction becomes a projection of the scatter points to the probe coordinate

system. Given SGr = (SGrx , SGry , SGrz) the scatterer position in the grid coordinate sys-

tem, its projection in the probe coordinate system, denoted by SAZ = (SAZx , SAZy , SAZz),

is given by:

SAZ = (SGr − Ta)×R−1
a

where Ta and Ra represent the translation and rotation of the probe, respectively. Spa-

tial hashing is utilized to efficiently identify cells within the AZ, ensuring that only those

intersecting or included within the AZ are considered for scatterer extraction. Addition-

ally, a slightly bigger acquisition zone is used to ensure the detection of partially included
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cells.

3.1.3 Implementation Overview

The SCUS simulation framework is implemented in C++ and can be executed using the

code repository available at https://github.com/STORM-IRIT/scus. Scatterers

are generated according to a settings JSON file with the following format:

{

"Grid":{

"Dimension":{

"x":number, //mm

"y":number,

"z":number

},

"UseRot":true/false, //random rotation of the cells

"CellDim":number, //mm

"SamplesPerCell":number,

"Sampler":"dart"/"regular"/"uniform"/"cascaded",

"FixedSeed":number,

"WeightingObject":{

"Type: "Sphere",

"Position":{ //mm

"x":number,

"y":number,

"z":number

},

"Radius":number //mm

}

},

"AcquisitionZone":{

"Dimension":{ //mm

"Width":number,

"Height":number,

"Depth":number

},

"Position":{ //mm
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"x":number,

"y":number,

"z":number

},

"Rotation":{

"Angle":number //degree

"Axis":{ //axis of the rotation, will be normalized

"x":number,

"y":number,

"z":number

}

}

},

"OutFile":{

"Mode": "SPACE"/"PROJECTED"/"RAW", // coordinates

"Name":"... // name of the outfile

}

}

Here, the WeightingObject corresponds to the tissue mimicking map and its role is to

return the weight for a specific scatterer position during the computation of scatterer

amplitudes. It can also be of "Type": "Cube" characterized by "Side" measured in mm,

or "Plane", for a medium separated into two by plane at chosen "Height" parameter,

Additionally, it can be "Dicom", for medical data but this is not considered for this

thesis.

3.2. 3D FEM simulation

In this thesis, tissue behaviour is modeled as linear elastic, isotropic, and nearly incom-

pressible. Tissues are characterized by Young’s Modulus (E) and Poisson’s Ratio (ν)

close to 0.5. Using the FEM, we solve the governing equations of linear elasticity in

the discrete domain. In this section we review the proposed deformation model and its

implementation using the FEniCS library, in Pyhton [1].
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3.2.1 Mathematical Formulation

The equations governing small deformations of a body Ω are given by the kinematic

equation (1.2), describing the strain-displacement relationship, the constitutive equation

(1.3), describing the stress-strain relationship, and the balance equation (3.1) describing

the equilibrium of forces within the body.

From the kinematic and constitutive equations, the relationship between stress and

displacement can be derived as:

σ = λ(∇ · u)I + µ(∇u+ (∇u)⊤) (3.1)

The FEM simulation proposed to approximate tissue displacement in the x-, y-, and

z-directions under ultrasound probe force involves the following key steps:

Variational Formulation

The variational formulation of Equation (3.1) and Equation (1.5) is formulated as: find

u ∈ V such that:

a(u, v) = L(v) ∀v ∈ V̂ , (3.2)

where

a(u, v) =

∫
Ω
σ(u) : ϵ(v) dx, (3.3)

σ(u) = λ(∇ · u)I+ µ(∇u+ (∇u)⊤) (3.4)

L(v) =

∫
Ω
f · v dx+

∫
∂ΩT

T · v ds. (3.5)

Here, σ(u) is the stress tensor, ϵ(v) is the strain tensor, T represents the traction

force on the boundary ∂ΩT . V and V̂ are suitable function spaces for the displacement

field u and the test function v, respectively.

Domain Discretization

The domain Ω is discretized into tetrahedral elements. A 25x25x25 cube mesh with a

resolution of 25 in each dimension is used, resulting in 6x25x25x25 tetrahedral elements.

Each element is assigned material properties corresponding to different tissue components

or regions within the tissue, allowing for heterogeneous simulations. A subdomain is cre-

ated specifically for mesh nodes that are in contact with the ultrasound probe, accounting

for the localized interaction between the probe and tissue.
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Choice of Basis

For our simulation, we use polynomial basis functions of degree 1, suitable for small

deformations and linear elasticity to optimize computational efficiency. Each element

approximates the displacement field u and force using nodal values and linear shape

functions vk. Thus, the solution u and the force f can be expressed as follows:

u =

n∑
k=1

ukvk and f =

n∑
k=1

fkvk.

Assembling the Element Equations

To determine the overall system response modeled by the network of elements, all indi-

vidual element equations must be assembled. This assembly process combines the matrix

equations expressing the behavior of each element into a global system matrix equation

that represents the behavior of the entire system. A fundamental aspect of this assembly

procedure is that at shared nodes where elements connect, the displacement is the same

across all connected elements.

Imposing Boundary Conditions

The Dirichlet boundary condition is employed to represent zero displacement at the

bottom face of the cube. The rest of the cube faces are free. Fixed displacement is

applied to nodes belonging to the contact area of the probe. Before solving the global

system of equations, these fixed nodal values and force loads on known nodes are imposed.

Solving the Global System Equation

A parallel sparse direct solver is employed to solve the global system of equations, in-

tegrating boundary conditions and material properties to estimate tissue displacement

under ultrasound probe force.

3.2.2 Implementation Details using FEniCS

FEniCS provides a suite of built-in classes and methods that facilitate modeling tasks

such as probe-tissue interaction and the creation of diverse subdomains within meshes.

Here are the methods from FEniCS used and their specific applications within this work:

• BoxMesh: Used to generate a tetrahedral mesh of the tissue sample based on

specified grid dimensions.
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• VectorFunctionSpace: Defines function spaces (V, hatV) for vector-valued func-

tions using continuous piecewise quadratic basis functions of degree 1.

• MeshFunction: Associates data with mesh entities such as vertices or cells. It

is employed to mark subdomains within the tissue sample volume. This allows for

defining different material properties or boundary conditions.

• SubDomain: Defines the interface to specify subdomains within a mesh using

a MeshFunction. It allows for defining different geometric regions (e.g., cube,

sphere, plane) within the tissue sample to simulate various components. The in-

side() method is used to mark cells belonging to specific subdomains, including

defining the contact surface based on the probe’s width and height.

• UserExpression: Allows for defining custom mathematical vector valuable ex-

pressions. We leverage this built-in class to define material properties as functions

of space, using the cell basis evaluation. It is also used to model the external force of

the probe as a constant load applied uniformly across the contact points belonging

to the contact surface subdomain.

• DirichletBC: Specifies fixed displacements across parts of the mesh boundaries.

Implemented to simulate clamped boundaries by setting zero displacement on the

bottom face of the cube.

• Measure: Provides integration measures, ’dx’ for volume integration across differ-

ent domains and ’ds’ for surface integration. It was used to compute integrals in

the weak formulation of PDEs accounting for different subdomains.

• Solve: Solves the linear variational problem a(u, v) = L(v) using the MUMPS

solver. This step computes the solution for the displacement field u.

The FEM simulation was implemented in Python, consisting of three main compo-

nents: Volume, Probe, and FEM. The UML class diagram in Figure 3.2, shows their

main functionalities and roles in the simulation.
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Figure 3.2: UML Class Diagram for FEM simulation main components: Volume, Probe

and FEM. Note AcquisitionZone_py, shown in blue, corresponds a modified version of

the original AquisitionZone class in C++
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3.3. Ultrasound simulation combining SCUS and 3D FEM

In order to incorporate tissue displacement in the simulation framework, two mod-

ifications are introduced to the simulation parameters initially described in subsection

3.1.3. Firstly, the incorporation of the field "Force", corresponds to the magnitude of

the external force corresponding to the probe’s pushing force in Newtons (N). Secondly,

a WeightingObject of "Type": "Phantom". This new type includes a collection of simple

WeightingObject of the type cube, sphere, and plane, that can be used to create anatom-

ical phantoms at the elementary level or to simulate different components within tissues

according to biomechanical parameters. Here, is an example.

{

"WeightingObject"{

"Type": "Phantom",

"GeomObj": [

{

"Type: "Sphere"/"Cube"/"ThickPlane",

"Position":{ //mm

"x":number,

"y":number,

"z":number

},

"Size": value //radius, side, thickness

"Value": value //weight

"E": value //Young’s Modulus

"nu": value //Poisson’s Ratio

},

{

//another object

},

{

//another object

}

]

}
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Figure 3.3: (a) Augmented Acquisition Zone in the reference configuration. (b) Acqui-

sition Zone in the deformed configuration. Due to the compression force of the probe,

tissues deform, allowing the probe to approach the internal anatomy and cover deeper

areas.

Following the simulation workflow proposed in Figure 3.1, we can summarize the

integration of the deformation model and the scatterer model as a sequential process

with the following steps.

1. Compute Displacement Field: The displacement field u, resulting from the

force of the probe on a tissue-mimicking volume (with given E and ν), is computed

by the deformation model using the 3D FEM.

2. Update Initial AZ Dimension: Adjust the initial AZ dimensions in the simula-

tion settings, accounting for the maximum displacement in the x, y, and z directions

as AZ(±|u.max()|), see Figure 3.3(a). The scatterer model, using simulation pa-

rameters and “Mode”: “SPACE”, generates scatterers in a grid coordinate system

with respect to the augmented AZ.

3. Update Scatterers: Modify the scatterers’ positions, with their corresponding

amplitudes, according to the displacement field to reflect the tissue deformation.

As a result, scatterers will lie within the deformed configuration of the tissue sample.

4. Update Initial AZ Position: Adjust the initial AZ position to simulate the

probe’s displacement into the tissues when a pushing force is applied. The new AZ
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position in the deformed configuration, pdef, is computed as follows:

pdef = pref + |u(pref)| ⊙ d

where pref corresponds to the initial position of the acquisition zone (x, y, z), u(pref)

represents the displacement (in mm) of pref, ⊙ denotes element-wise multiplication,

and d is the direction vector given by the rotation of the probe.

5. Filter Scatterers: Filter the scatterers based on their positions with respect to

the AZ in the deformed configuration, see Figure 3.3(b).

The simulation is run in Python, the scatterers are generated using an executable file

run as a Python subprocess.

3.4. B-mode ultrasound image generation

Following Gaits et al.(2023), a convolutional approach is used to generate the final

ultrasound slice from the displaced scatterers. Scatterers lying in the AZ post- deforma-

tion, are projected into the probe coordinate system and discretized into a 2D scatterer

map. Each scatterer’s amplitude contributes to this map by summing its amplitude into

its closest pixel. The resulting scatterer map is then convolved with a spatially-invariant

Point Spread Function (PSF) to simulate the ultrasound image.

3.5. Conclusion

In this chapter, we explored the integration of tissue displacement within the ultra-

sound simulation framework. We proposed updating scatterers with displacements ob-

tained from 3D FEM simulations, driven by external forces from the probe and a tissue-

mimicking volume characterized by Young’s modulus (E) and Poisson’s ratio (ν). There

are two key limitations in directly applying displacement to scatterers in a reference con-

figuration: it neglects out-of-plane deformations, and scatterers corresponding to above

the probe’s AZ are disregarded. To address these limitations, we propose generating

scatterers relative to an augmented acquisition zone, applying the correspondent dis-

placement, and finally employing filtering techniques to extract only those scatterers

within the probe’s field of view in the deformed configuration. The use of FEniCS al-

lowed for easy integration and provided versatility to adapt the modeling to our specific

problem.
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Chapter 4

Results

4.1. Deformation in Homogeneous vs Non-Homogeneous

Tissue Samples

4.1.1 Experimental setup and FE Models

Axial compression is applied by vertically displacing the probe into the tissue, see Figure

4.2. An incremental force, ranging from 0 to 1.5N, is applied in the negative y direc-

tion. The results are evaluated at probe displacements of 0 mm, 2.5 mm, and 4.5 mm.

Two types of tissue samples are modeled: homogeneous and non-homogeneous. We use

the term "non-homogeneous" to refer to variations in biomechanical properties between

different tissue components, but note each component remains modeled as a linear, homo-

geneous, and incompressible tissue. Table 4.1 defines the size, position, and biomechanical

properties of the tissue components. Additionally, it includes the echogenic values, where

small inclusions are treated as high echogenic mediums.

For the scatterer model generation, the following parameters are used: UseRot = true,

SamplesPerCell = 27, Sampler = ”dart”, and FixedSeed = 19011998. The acquisition

zone dimensions are Width : 12,Height : 1,Depth : 15, positioned at x : 12.5, y : 25, z : 12.5,

with a rotation of Angle : −90,Axis : x : 0, y : 0, z : 1. B-mode ultrasound images are gen-

erated with a resolution proportional to the width and depth dimensions of the acquisition

zone, using 120, and 150 for the lateral and axial resolution.
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Figure 4.2: FE model to study homogeneous vs non-homogeneous tissue deformation.

The force is applied in the -y direction to the nodes of the mesh in contact with the

surface of the linear array probe. The bottom face of the cube is clamped. For a non-

homogeneous tissue sample, the mechanical properties of the incision (small cube) differ

from the surrounding tissue.

Object Size (mm) Position (mm) Value E (kPa) ν

Cube 25 (12.5, 12.5, 12.5) 1 0.05 0.49

Cube 4 (12.5, 12.5, 12.5) 10 0.05 0.49

(a) Homogeneous tissue sample

Object Size (mm) Position (mm) Value E (kPa) ν

Cube 25 (12.5, 12.5, 12.5) 1 0.05 0.49

Cube 4 (12.5, 12.5, 12.5) 10 0.5 0.49

(b) Non-Homogeneous tissue sample

Figure 4.1: FE Model Parameters for Homogeneous and Non-Homogeneous Tissue Sam-

ples. The non-homogeneous sample includes a hard inclusion 10 times stiffer than the

surrounding tissue.
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4.1.2 Qualitative assessment of results

Deformation in B-mode image

Figure 4.3 shows the simulated 2D slices under different probe positions. In (a) the

probe is placed on the tissue surface. In (b) and (c), the probe is pushed into the tissue

by 2.5 mm and 4.5 mm, respectively. The top row corresponds to simulations without

considering tissue deformation, where the image is directly generated from scatterers

extracted from a reference configuration. The second and third rows show slices incor-

porating tissue deformation from 3D FEM simulations accounting for the mechanical

properties of the homogeneous and non-homogeneous tissue samples, respectively.

Differences in the position of the small cube relative to the probe (top edge of the image)

are evident, with a smaller distance observed when no deformation model is considered.

This discrepancy becomes more pronounced with increased compression force. The tissue

responds to the applied force by undergoing displacement and compression, not only

noticeable in the cube but also in the surrounding tissue. Although the displacement

in the vertical direction seems comparable for both cubes, the non-homogeneous sample

offers greater resistance to compression due to its stiffer inclusion in the middle.

3D deformation of tissue samples

3D visualization allows for the observation of displacement and deformation in all direc-

tions, providing better insights. Figure 4.4 shows the magnitude of the displacement field

vectors from FEM simulations for homogeneous (a) and non-homogeneous (b) tissue sam-

ples under two different probe displacements. The magnitude of the displacement vector

indicates how far each point is displaced due to the applied force. Larger magnitudes are

shown in red, while lesser displacement is shown in blue.

Greater displacement occurs at points in contact with the probe and then decreases

progressively from the contact points. In the homogeneous medium, the displacement

decreases uniformly through both subdomains. In contrast, the non-homogeneous tissue

sample exhibits a non-uniform displacement pattern. Points belonging to the small cube

subdomain, experience a lower displacement due to its increased rigidity. This results

in less compression of the small cube, and a higher force to achieve the same probe

displacement compared to the homogeneous tissue sample.

In Figure 4.5, we visualize the effects of applying the estimated displacement field to
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No Tissue Deformation

Tissue Deformation in Homogeneous Tissue Sample

Tissue Deformation in Non-Homogeneous Tissue Sample

Figure 4.3: Simulation of B-mode images using probe displaced by (a) 0 mm, (b) 2.5mm,

and (c) 4.5 mm into the tissue samples. The first row shows the output from previous

work. The second and third rows illustrate the results incorporating tissue deformation

in the simulation framework for homogeneous and non-homogeneous tissue samples, re-

spectively.
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Figure 4.4: Magnitude of displacement vector from FEM simulation. Red values indicate

areas with larger displacement, typically near the probe. The first column shows defor-

mation from a 2.5 mm probe displacement, requiring 0.55 N for the (a)homogeneous and

0.57 N for the (b) non-homogeneous tissue. The second column shows deformation from

a 4.5 mm probe displacement, requiring 0.99 N and 1.05 N respectively.
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mesh nodes, achieving the deformed configurations corresponding to a probe displace-

ment of 5 mm. This comparison highlights the deformation effects in homogeneous and

non-homogeneous tissue samples. In the homogeneous medium, both displacement and

changes in the curvature of the top face are observed due to the external force. Con-

versely, in the non-homogeneous tissue sample, the small cube is displaced relative to the

reference configuration, but the curvature changes are not apparent.

Figure 4.5: Visualization of (a) reference and (b)-(c) deformed configurations as reults

of probe displacement of 4.5 mm. The homogeneous tissue sample (b) exhibits uniform

displacement throughout both subdomains, with noticeable changes in curvature on the

top face of the small cube in response to the external force. In the non-homogeneous

sample (c), the stiffer properties of the cube make it more resistant to deformation.

4.1.3 Quantitative assessment of results

Probe-to-inclusion distance

Figure 4.6, shows the annotated B-mode images with the corresponding distance from

the probe to the small cube when the probe reaches a displacement of 4.5 mm. Confirming

the displacement and compression of the cube observed from the qualitative evaluation.

Effect of deformation on scatterer spatial distribution

Figure 4.8, shows the count of 1 mm3 cells within the acquisition zone of a probe

displaced 4.5mm, each cell corresponding to a 10x10 pixel square in the generated image.

The mean and standard deviation of the scatterer count distribution, calculated using a

mixture of Gaussian distributions, are reported in Table 4.7, along with the corresponding

compression force and total scatterer count per image. When considering deformation,
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Figure 4.6: Distance cube to probe (red) and length of the small cube (green) for (a) no de-

formation, (b) deformation in a homogeneous and (b) deformation in a non-homogeneous

tissue sample, using a probe displacement of 4.5mm

the applied displacement disrupts their uniform count. As a result, the total number of

samples per cell within the acquisition zone deviates from the original count of 27.

Configuration Force Scatterers count

(N) total grid cell

Reference - 4858 27.0± 0.0, 13.5± 0.96

Homogeneous 0.55 4952 27.7± 2.62, 13.17± 3.98

Non-Homogeneous 0.57 4924 27.59± 2.61, 12.43± 3.18

(a) 2.5 mm

Configuration Force Scatterers count

(N) total grid cell

Reference - 4858 27.0± 0.0, 12.96± 2.15

Homogeneous 0.99 5109 28.54± 3.33, 13.04± 2.88

Non-Homogeneous 1.05 5117 28.67± 3.45, 12.61± 2.77

(b) 4.5 mm

Figure 4.7: comparison of scatterer counts and applied forces for different configurations

at two probe displacements: 2.5 mm and 4.5 mm
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Figure 4.8: Grid cell scatterer counts within the 1 mm³ acquisition zone for a probe

displacement of 4.5 mm in (a) reference configuration, and (b)-(c) in deformed configu-

ration for a homogeneous and non-homogeneous sample, respectively. Increased counts

at the borders indicate partial cell occlusion. Central cell count is no longer uniform

post-deformation.

4.2. Breast Mimicking Tissue Sample

4.2.1 Experimental setup and FE Models

The same parameters were used for scatterer generation, and axial compression was

similarly applied by vertically displacing the probe into the tissue. An incremental force

ranging from 0 to 1.5 N was applied in the negative y direction. We evaluate the results

using probe displacements of 0 mm, 2.5 mm, and 4.5 mm. A phantom is constructed

with mechanical properties mimicking various tissue components of the breast, reported

in the literature [39]. The FE model is shown in Figure 4.10.

Object Component Size (mm) Position (mm) Value E (kPa) ν

ThickPlane Skin 1 (12.5, 25, 12.5) 100 200 0.49

ThickPlane Fat 1 (12.5, 24, 12.5) 5 1.5 0.49

Cube Soft Tissue 25 (12.5, 12.5, 12.5) 20 10 0.49

Sphere Tumor 2 (12.5, 12.5, 12.5) 3 40 0.49

Figure 4.9: FE Model parameters to simulate B-mode images of breast tissue with tumor.
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Figure 4.10: FE model of a sample with multiple layers (skin and fat) above the inclusion

(tumor) and soft tissue with breast mechanical properties. The force is applied in the -y

direction to the nodes of the mesh in contact with the surface of the linear array probe.

The bottom face of the cube is clamped.

4.2.2 B-mode image simulation results

Figure 4.9 shows the simulated images obtained with probe displacements of 2.5mm

and 4.5 mm, comparing scenarios with and without tissue deformation. In the absence

of deformation, tissue domains above the probe position are not captured. However,

incorporating tissue displacement accounts for compression at the top layers, resulting in

a more realistic simulation. The simulation of a B-mode image with tissue deformation,

takes on average less than 18s, with the modeling phase comprising approximately 16s of

this duration.

4.3. Conclusion

In this chapter we showed the results of introducing tissue deformation to obtain more

realistic B-mode ultrasound images, contrasting them with their non-deformed counter-

parts. By accounting for deformation, simulations can reflect tissue behavior under probe

compression, mimicking real-world examination. We showed the deformation effects at

both a pixel level and scatterer level and used 3D visualization to analyze tissue responses

in both in-plane and out-of-plane directions under probe force. Finally, we demonstrated
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No Tissue Deformation

Incorporating Tissue Deformation

Figure 4.11: Simulation of B-mode images at different probe positions (a) surface of a

tissue sample, and probe with displacement (b) 2.5 mm and (c)4.5mm. Tissue properties

for breast components are used to represent soft tissue, tumor, skin, and fat. Skin and

fat, are modeled as layers of 1mm, while the tumor is represented by a sphere with a

radius of 2 mm. The top row corresponds to simulation results using previous work. The

second row shows a more realistic simulation by incorporating the deformation of the

tissues.

an example using the Phantom WeightingObject to replicate various tissue components,

such as layers or spheres, to simulate tumors within a sample with breast tissue mechan-

ical properties.
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Chapter 5

Summary

5.1. Problem statement

Integrating tissue deformation into ultrasound simulation is a crucial step towards

achieving more realistic ultrasound images, which can greatly enhance medical training

and ultrasound technology development. This involves accounting for anatomical defor-

mations caused by the pushing force applied by the probe before image acquisition.

The primary objective of this thesis was to achieve a more realistic simulation of ultra-

sound images by incorporating the deformation of soft tissues into an existing ultrasound

simulator, which was able to extract scatterers from a tissue-mimicking volume repre-

sented as a regular, non-deformed grid.

In this work, we proposed to estimate the positions of the scatterers in the deformed

configuration by updating their positions with the displacement field obtained through

the solution of linear elasticity equations using the Finite Element Method. This ap-

proach inherently accounts for tissue properties, such as stiffness and compressibility.

Furthermore, only scatterers within the probe acquisition zone in the deformed config-

uration are considered for image generation, aligning with clinical practice where only

anatomical structures within the probe’s field of view contribute to the final ultrasound

image.

5.2. Results

The results closely aligned with our initial expectations, demonstrating the coherence

and meaningfulness of the generated images. A comparative analysis was conducted
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between simulations performed without tissue deformation and those incorporating de-

formation, considering both homogeneous and non-homogeneous tissue samples. When

disregarding deformation, the upper layers of tissues were absent in the final image, and

the modeled anatomy appeared closer to the probe surface.

The simulation framework enabled the creation of diverse phantoms with simple geo-

metrical shapes, mimicking various tissue components such as those found in breast tissue.

Incorporating rigid inclusions, for instance, facilitated the simulation of tumors. FEniCS’

adaptability in defining custom mesh subdomains and its robust solver capabilities made

it an adequate choice for accurately modeling interactions probe-tissue interactions.

An important aspect to note was the perturbation in scatterer spatial distribution,

resulting in deviations from the original count per cell. Some scatterers exited the acqui-

sition zone when the displacement field was applied, particularly as the side faces of the

cube allowed free displacement. Users should use adequate parameters for scatterers per

cell to ensure the development of fully formed speckle patterns.

However, it is essential to acknowledge the computational cost associated with our

approach. While ultrasound simulation is characterized by its real-time capability, solving

the displacement field introduced a notable delay. On average, processing a cube of 25m³

took approximately 16 seconds, compared to less than 2 seconds for a slice without

deformation.

5.3. Future plans

In our future plans, we aim to explore alternative modeling techniques that offer lower

computational costs compared to FEM in order to ensure compatibility with real-time

capabilities.
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